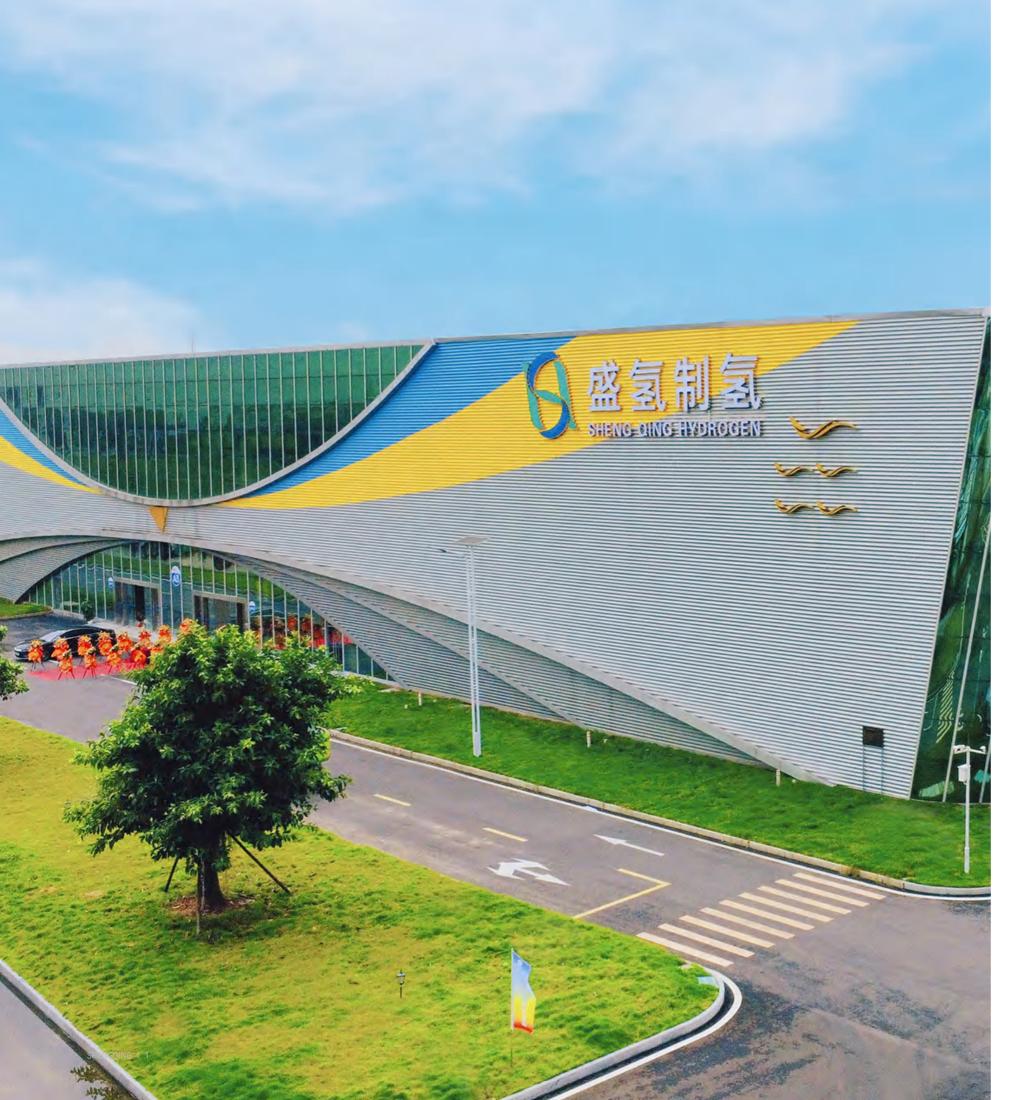


SHENGQING CATALOGUE | 2023年制

致力成为国内制氢设备 细分领域的龙头企业


| 制 | 氢 | 设 | 备 | 型 | 录

佛山市南海区狮山镇平谦工业园A3-2 服务热线: 0757-8858 1668

公司介绍

深度融入氢能技术先行地 - 广东佛山,服务粤港澳大湾区氢能产业高地

广东盛氢制氢设备有限公司,注册资本为 1000 万元。公司位于广东省南海区狮山镇,地处粤港澳大湾区腹地,是当地氢能产业链上游的重点企业。

公司深度融入氢能技术先行地 - 广东佛山,并联合区域内涉及氢燃料电池汽车整车研发重点企业,积极构建完善的氢能产业生态,服务于粤港澳大湾区氢能产业高地,助力实现"双碳"目标,推动经济社会可持续发展。

公司业务涉及碱水制氢设备和气体纯化设备的研发、设计、生产和销售,同步 PEM 制氢设备领域重点布局开发。配有齐全的机加工、总装、电控、仪器等生产车间和设施,可自主生产 5 Nm³/ h~1000 Nm³ /h 的电解水制氢设备和氢气纯化设备,以及模块化可扩展式的电解系统平台。公司目标致力成为国内外制氢设备细分领域的龙头企业。

团队介绍

我司具备高效大功率制氢设备的定制设计、自主生产和升级迭代能力,拥有压滤式中压碱水制氢设备完全自主的知识产权,并配备了一支来自于清华、中科院等国内外一流院校的博士团队作为公司的科研队伍,以及一支在碱水制氢设备领域拥有 20-30 年经验的工程技术团队,拥有极强的"科研+工程化"实力核心骨干团队为产品研发及迭代提供强有力支撑。并且,核心团队拥有多项制氢设备运行业绩案例,所生产和调试的多台套设备已长期在国内外安全稳定运行十余年。

科技创新核心团队

廖汉东

先行研发高级主任工程师

清华大学博士、佛山市科技领军人才、南海区加氢站专家组评审员 已发表 20 篇学术论文,含 16 篇 SCI,获得 9 项专利,在氢能领域学术 成果突出

担任公司科技创新领域相关工作

黄颖

高级主任工程师

中国科学院博士,博士后

已发表 SCI 论文十余篇,申请专利三十余项,具有十余年氢能源前沿 技术研究和设备开发经验,主持了多个电化学制氯氢燃料电池系统和 氢动力项目,成果突出

担任公司氢能源设备开发和相关产学研工作

核心领导

冯勇

董事总经理

在氢能领域工作多年,曾任国外氢能领域企业核心高管 拥有20多年的能源领域工作经验,带领团队开发一系列先 进、可靠的制氢设备以及模块化可扩展式的电解系统平台, 参与了多个氢能项目的实施,在绿氢制取、储存、加注等方 面有着丰富的项目经验

现负责公司全面的运营管理

工程技术核心团队

李俊泉

高级工程师

装备制造领域 25 年工作经验,具有丰富的生产型企业管理 经验

生产部负责人,全面负责公司的技术、质量、生产工作

徐占

高级工程师

国内电解水制氢设备龙头企业 25 年工作经验, 20 年装备生产一线经验

协助管理公司生产工作,把控产品生产质量

03

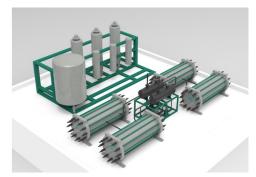
产品介绍

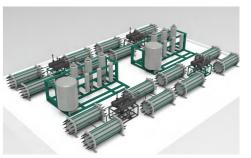
■ 设备组成

主体设备、辅助设备、电控设备、纯化装置 (1) 主体设备: 电解槽 - 氢、氧气发生装置

附属设备框架 - 气液处理系统: 为框架组合式结构,由碱液换热器,氢、氧分离器,氢、氧洗涤冷却器,实现对水电解槽制氢装置出来的氢气进行洗涤、除碱、冷却、除去漂浮雾滴的作用。

(2) 纯化装置:净化氢气的设备,能将 氢气中的氧气和水分去掉。以水电解氢气 为原料气,经过催化除氧、冷却冷凝、吸 附二级干燥和高效过滤后获得高纯氢气。 采用三塔流程,三台干燥器交替工作、再 生、吸附,以实现整套装置工作的连续性。 并使用产品氢气为再生气,再生效果好, 产品的氢气的露点可达到-70°C以下。


(3) 电控设备:包括了配电箱、变压器、整流柜和 PLC 控制柜,为电解槽提供稳定的直流电源,并实现设备自动化和过程自动化控制,达到无人值守状态。



■ 模块化可拓展式制氢系统

由四套 1000Nm³/h 电解槽搭配一套气液分离框架、纯化装置为一个独立的储能单元,能够灵活适配绿电的波动性,提升制氢设备的工作稳定性,实现电能的高效利用,同时降低设备的成本,节约工厂占地面积。

通过调整储能单元中每个 1000 标方电解槽的接入,确保总有电解槽工作在合适的区间,保证了制氢速率和氢气纯度达标。在更大的绿电场景,可根据需求灵活配置。

■ 集装箱式整体方案

是上述模块化可拓展式制氢系统的进一步改进,其集成电解槽、气液处理器、三塔纯化设备、控制柜、整流柜、变压器和水处理装置等全套设备于40尺标准集装箱(12192mmX2438mmX3200mm)中,只需要接入自来水和电即可随时随地制氢,单个集装箱的高纯氢制氢量可高达100Nm³/h。可根据用户需求,进行模块化组装,组成更大的制氢设备整列。其特点是占地面积小,对场地要求低,并具备快速运输、部署和撤收的功能。

PRINCIPLE FLOW CHART OF HYDROGEN PRODUCTION PROCESS

■ 制氢生产工艺原理流程图

■ 水电解制氢子系统

氧气系统

氧气作为水电解制氢装置的副产品具有综合利用价值。氧气系统与氢气系统有很强的对称性,装置的工作压力和工作温度也都以氧侧为测试点。

氧气的排空除与氢气排空作同样考虑外,对于不利用氧气的用户,排空是常开状态。

氢气系统

氢气从电解小室的阴极侧分解出来,借助于电解液的循环和气液比重差,在氢分离器中与电解液分离形成产品气。

充氮和氮气吹扫系统

装置在调试运行前,要对系统充氮作气密性试验。在正常开机前也要求对系统的气相充氮和吹扫,以保证氢氧两侧气相空间的气体远离可燃可爆范围。充氮口设在氢、氧分离器连通管的中间,氮气引入后流经:

原料水系统

水电解制氢(氧)过程唯一的"原材料"是高纯度水。此外氢气和氧气在离开系统时要带走少量的水份。因此, 必须给系统不断补充原料水。通过补水还维持了电解液液位和浓度的稳定性。补充水可以从氢侧进也可同时从氢、 氧两侧补入,这里按从两侧补入。

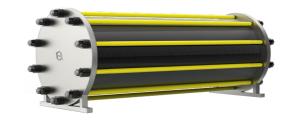
电解液循环系统

电解液循环系统作用是,从电解槽带走电解过程中产生的氢气、氧气和热量,将补充的原料水送给电解槽,对电解槽内电解反应区域进行"搅拌",以减少浓差极化,降低电耗。

冷却水系统

水的电解过程是吸热反应,制氢过程必须供以电能,但水电解过程消耗的电能超过了水电解反应理论吸热量。超出部分主要由冷却水带走,以维持电解反应区正常的温度。电解反应区温度高,可降低能源消耗,但温度过高,电解小室隔膜将损坏。本装置要求工作温度不超过90℃。此外,所生成的氢气、氧气也须冷却除湿。可控硅整流装置也设有必要的冷却管路。冷却水分三路流入系统:

Focus On Core Competencies And Make Core Products Intelligently


聚焦核心能力 智造核心产品

■ 设备核心装置——电解槽

装置结构

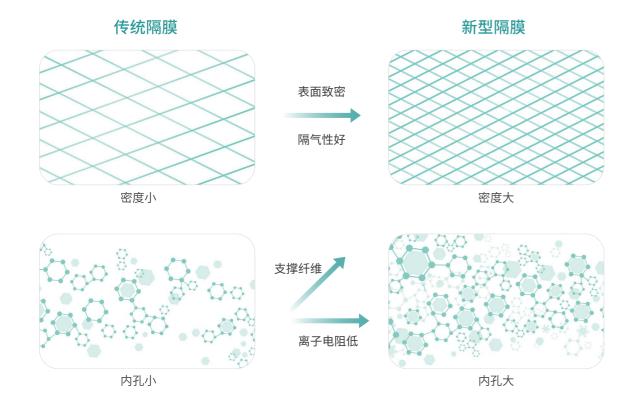
电解槽工作在 0.5~3.0 Mpa 压力范围、85°C温度范围。整个槽体由左右端压板、左右极板、中间极板、隔膜垫片、付极网等组成,整个槽体为压滤式双极板框结构。电解槽的最大使用压力为3.0 Mpa, 槽体结构紧凑外形美观,**具备优异的"软连接"结构,性能稳定、使用寿命长。**

部件特点

电极板与极板

电极板采用超深冲压冷轧板材料,表面密布乳头状突起,起支承付极网和隔膜作用。极板采用无孔镀镍工艺,电镀均匀,电解效率高能耗低。本设备的主极板、板网、电极网为一体化结构,可实现将电极的装配接触电阻降为零。

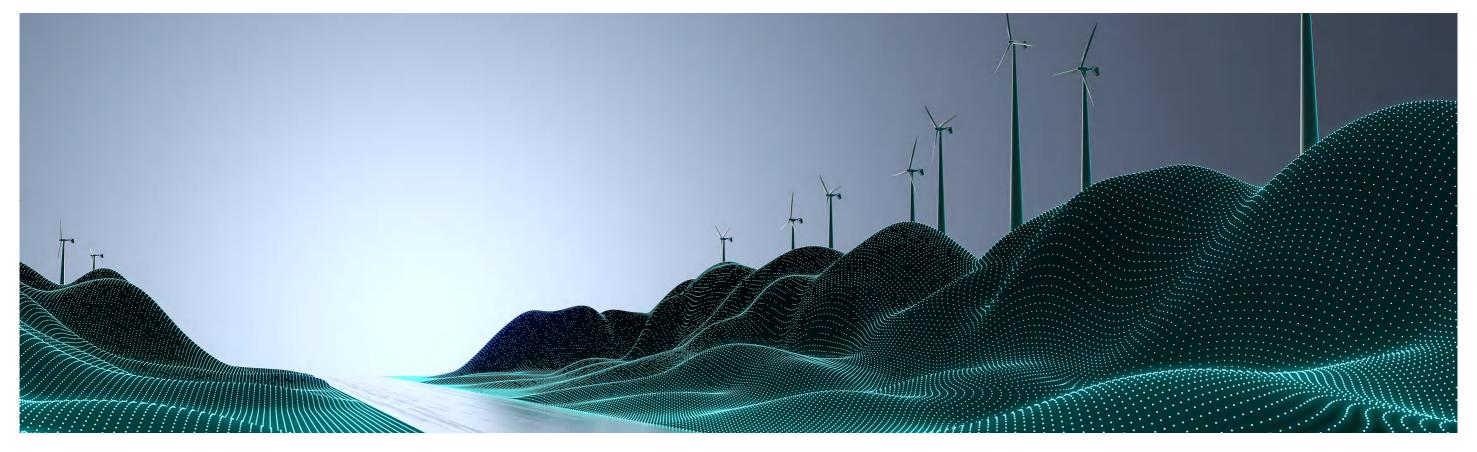
负极网


负极网采用纯镍丝网,并采用镍铝合金喷涂工艺并经活化处理增 大了电解表面积,**大大降低了电解能耗。**

■ 主要技术指标

碱性水电解制氢装置											
型 号	产氢量 (Nm³/h)	产氧量 (Nm³/h)	功率指标 (kW)	直流电流 (A)	直流电压 (V)	氢气纯度 (%)	氧气纯度 (%)	工作湿度 (°C)	工作压力 (Mpa)	重量 (kg)	外形尺寸 长宽高(m)
SQH-A100E	100	50	500	6400	68	≥ 99.8	≥ 99.2	< 90	0.8-1.6	6000	3x1.7x1.8
SQH-A1000E	1000	500	5000	7900	590	≥ 99.8	≥ 99.2	< 90	0.8-1.6	45000	7x2.3x2.4

氢气纯化装置主要技术指标												
型 号	处理 量 (m³/h)	氢气 纯度 (%)	工作 压力 (Mpa)	脱氧	干燥作温度	再生	冷却水 用量 (m³/h)	耗电 量 (kW·h)	仪表气 用量 (m³/h)	含湿 量 (露点)	含氧 量 (ppm)	外形 尺寸 长宽高 (m)
SQH-A100P	100	≥ 99.9995	0.8-1.6	80-100	10	250	3	6	3	≤ -75	≤ 2	2.5x1.8x2.5
SQH-A1000P	1000	≥ 99.9995	0.8-1.6	80-100	10	250	12	15	3	≤ -75	≤ 2	4x2x3


密封材料

隔膜垫片采用隔膜与独特工艺配方的改性密封材料 F46 高温熔融一体成形,不仅所需冷流性小,弹性强且密封性能好,因而能长期抗腐蚀和抗老化,可确保电解槽在连续运行状况下十年不大修。

■ 设备优势与特点

- ▲ **总体特点**:结构紧凑,操作方便,设计先进,性能可靠,品质优良,产量可调,开停自由,耗电量小; 维护简便,寿命长久。
- ▲ **主体技术优势:** 技术成熟可靠,动态响应速度快,可与波动性电源直接制取氢气。
- ▲ 关键技术优势: 隔膜采用国际先进的第三代隔膜技术,与传统的石棉隔膜或 PPS 布相比,可提高 30% 以上电流密度,降低 10% 能耗,可达到 4.4 kW·h/NM³电解能效,远高于国内同类型设备水平。
- ▲ **设备自制率高**: 具备成熟的电气成套设备技术优势,可实现制氢系统中电气组件的自主设计、自主生产,包括了配电柜、控制柜、整流器和变压器等(占总体成本 25% 左右)。

碱性电解水制氢技术规模大、成本低,装机投资低、规模灵活,适用于作为大规模集中化氢能供应源,已广泛应用于工 业生产的各行各业,包括: 电力、钢铁、化工、玻璃等行业。同时,由于其生产的氢气成分简单,纯度高、杂质含量少, 尤其适用于对氢气品质要求高的领域,如氢燃料电池车用领域和半导体行业等。

风光氢储一体化

"双碳"背景下,氢储能可以解决新能源发电存储难以大规 模、长周期、跨季节的局限性,助力提高新型电力系统的低 碳电源支撑能力。在可再生资源丰富地区就近建设大规模电 解水制氢站,可将太阳能、风能等清洁能源发出的电能转换 成氢能载体,再输送到高纯氢负荷中心使用。

制氢加氢一体站

全国范围内,特别是广东,已经鼓励在非化工园区建设制加 一体站。制加一体站作为分布式制氢的新模式,能够有效减 少储运环节成本。同时还可结合谷电消纳制氢,实现氢源的 低成本供给。本设备可以高效融入制加一体站网络,实现氢 气规模化、经济化制取,形成城市负荷区域的制加一体化、 就地消纳的氢生态网。

绿氨合成

氨气关键合成原料就是氢气,占到了全球氢气总产量的40% 以上,然而现阶段 99% 以上的氢气都来自于高碳排放的煤 炭、天然气等化石能源的催化重整。依托于本设备可再生能 源制氢的绿氢制备,可进一步实现绿氨的合成。绿氨不仅能 广泛应用传统的化肥和化工原料领域,在未来还能作为动力 原料应用到发电、供热、船舶等领域,实现这些领域的深度 脱碳。

氢冶金

钢铁生产过程中会产生大量的二氧化碳等污染物,而通过氢 气取代碳作为还原剂和能量源炼铁,助力钢铁这类难脱碳领 域的"深度脱碳"。钢铁工业作为能源消耗大的资源密集型 产业,在"氢冶金"时代,碱水制氢设备可以有效地实现氢 气规模化、在线供应。